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1 Supplementary Figures and Table

α1 α2 α3

π1 π2 π3

1 2 3 4

5 6 7 8 9 10

Supplementary Figure S1: Double Nested Graph (DNG) notation and construction. For the
DNG(2, 1, 1; 2, 1, 3), there are 4 animals (top) and 6 plants (bottom). The animals are partitioned
into three boxes of size 2, 1, and 1 (the α’s), the animals in three boxes of size 2, 1, and 3 (the π’s).
The nodes in box αi connect to all the nodes in boxes π1, . . . , πk+1−i. This is shown for one node
in α1 (red), α2 (green) and α3 (blue).
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Supplementary Figure S2: Binary nestedness and eigenvalues, second example. Spectral ra-
dius (largest eigenvalue) distribution for all connected binary graphs with |P | = 6, |A| = 4 and
|E| = 19. Adding two edges greatly reduces the total number of possible configurations com-
pared to the |E| = 17 case (Figure 1, main text). There are 42,504 possible matrices with this
parameter combination, of these, 42,384 are connected (shown in figure). Among the connected
graphs, 2,544 are perfectly nested (coloured orange), and have higher spectral radii than most other
matrices (all perfectly nested matrices are contained in the top 15.06% of the distribution). As in
Figure 1 of the main text, the maximum spectral radius is associated with a perfectly nested matrix:
DNG(3, 1; 1, 5), matrix J . Matrices with the lowest spectral radii display interaction patterns that
depart most severely from perfect nestedness (top series).
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Supplementary Figure S3: Binary nestedness and NODF. Distribution of NODF values for
all connected binary graphs with |P | = 6, |A| = 4 and |E| = 17. There are 346,104 possible
incidence matrices with this parameter combination, and of these, 339,192 are connected (shown
in figure). Among the connected graphs, 7,560 are perfectly nested (coloured orange) (all perfectly
nested matrices are contained in the top 40.46% of the distribution compared to 4.59% when using
the spectral radius). Note that unlike the spectral radius (Figure 1 in the main text), many perfectly
nested matrices as well as not perfectly nested matrices share the same value of NODF, e.g., matrix
A, which is not perfectly nested, has the same NODF value as perfectly nested matrices.
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Supplementary Figure S4: Binary nestedness and NODF, second example. Distribution of
NODF values for all connected binary graphs with |P | = 6, |A| = 4 and |E| = 19. There are
42,504 possible matrices with this parameter combination, of these, 42,384 are connected (shown
in figure). Among the connected graphs, 2,544 are perfectly nested (coloured orange) (all perfectly
nested matrices are contained in the top 96.60% of the distribution compared to 15.06% when
using the spectral radius, Supplementary Figure S2). As in the case with |E| = 17 (Supplementary
Figure S3), many perfectly nested matrices as well as not perfectly nested matrices share the same
value of NODF.
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Supplementary Figure S5: Minimum and maximum spectral radius for perfect nestedness.
Nested perfectly binary structures with the minimum (top series) and maximum (bottom series)
spectral radius for |P | = 6, |A| = 4 and |E| = {10, 11, . . . , 23}. Notice that the matrix yielding
the minimum eigenvalue for a given number of connections |E| can be obtained by adding one
edge to the arrangement found for |E| − 1 connections, while this is not the case for the matrices
yielding the maximum eigenvalue (e.g., going from 14 to 15 connections in the bottom series).
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Supplementary Figure S6: Quantitative nestedness and binary structure. A perfectly nested
quantitative pattern is overlaid onto a set of perfectly nested, close to perfectly nested and non-
nested binary matrices from Figure 1 of the main text. Darker colours indicate larger coefficient
values, and white squares represent zero entries; results for the seven binary and quantitative tests
(p-values, lower values indicate greater nestedness) are given below each matrix. For the perfectly
nested and close to perfectly nested binary structures (bottom series), the tests for quantitative
nestedness are always highly significant. Remarkably, matrices that are significantly non-nested in
their binary form (top series) become highly nested when the nested quantitative pattern is taken
into account. This suggests that the quantitative structure of a network is likely to dominate any
underlying binary pattern.
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Supplementary Figure S7: Effect of nestedness and connectance on species persistence. We
simulated the obligate mutualism system in Equation S3 for |P | = 50 plants and |A| = 50 animals,
and with a variable number of edges |E| (and hence connectance) between the two sets of species.
In all cases, the parameters and initial conditions were taken from the original article by Thébault
& Fontaine [9]. We integrated the system numerically from t = 0 to t = 100, 000 and recorded the
fraction of surviving species (persistence, y-axis). The dashed lines are best-fit linear regressions.
The number of edges from left to right are 200, 250 and 300. For |E| = 200 most of the networks
are disconnected, while in the other two cases most of the networks are connected. We observe no
significant effect of nestedness (spectral radius of the community matrix with zero on the diagonal,
ρ, x-axis) on persistence, except for the most-connected case |E| = 300 where the slope is negative
(−0.03, p < 3.78 · 10−5). In no case do we observe a significant positive contribution of ρ to
persistence, as was claimed in [9].
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Supplementary Table S1: Nestedness of ecological networks. 10,000 randomisations per test per web.

Web Type Rows Cols Edges Bp1 Bp2 Bp3 Qp1 Qp2 Qp3 Qp4 Ref
1 para 14 20 57 <0.001 <0.001 0.209 0.698 0.693 0.812 0.803 [34]
2 para 19 9 51 <0.001 <0.001 0.242 0.156 0.155 0.335 0.331 [35]
3 mut 65 27 374 <0.001 <0.001 0.146 <0.001 <0.001 0.070 0.112 [36]
4 para 7 29 78 <0.001 <0.001 <0.001 0.100 0.083 0.615 0.800 [37]
5 para 10 40 91 <0.001 <0.001 <0.001 0.160 0.146 0.322 0.405 [38]
6 para 31 144 384 <0.001 <0.001 0.082 <0.001 <0.001 0.297 0.458 [39]
7 para 14 51 114 <0.001 <0.001 <0.001 0.062 0.056 0.478 0.648 [40]
8 para 17 53 158 <0.001 <0.001 0.002 0.033 0.032 0.390 0.501 [40]
9 para 33 97 316 <0.001 <0.001 0.005 0.122 0.120 0.452 0.475 [41]
10 para 5 23 51 0.011 <0.001 0.002 0.653 0.593 0.760 0.843 [42]
11 ant 41 51 285 <0.001 <0.001 0.548 <0.001 <0.001 <0.001 <0.001 [43]
12 ant 19 10 38 0.883 0.606 0.847 0.379 0.280 0.298 0.283 [44]
13 pol 13 13 71 <0.001 <0.001 0.693 0.002 0.002 0.892 0.886 [45]
14 pol 100 58 534 <0.001 <0.001 0.335 <0.001 <0.001 0.008 0.007 [46]
15 pol 103 54 467 <0.001 <0.001 0.202 0.097 0.096 0.704 0.698 [46]
16 pol 114 32 309 <0.001 <0.001 0.819 0.003 0.005 0.142 0.136 [47]
17 pol 88 40 278 <0.001 <0.001 0.534 0.671 0.665 0.889 0.894 [48]
18 pol 79 25 299 <0.001 <0.001 0.560 <0.001 <0.001 <0.001 <0.001 [49]
19 pol 8 14 33 0.004 <0.001 0.403 0.028 0.012 0.362 0.376 [50]
20 pol 44 13 143 <0.001 <0.001 0.035 0.146 0.137 0.386 0.393 [51]
21 pol 13 14 52 <0.001 <0.001 0.920 0.007 0.005 0.785 0.650 [52]
22 pol 12 10 30 0.151 0.031 0.591 0.263 0.197 0.424 0.430 [52]
23 pol 56 9 103 <0.001 0.005 0.046 0.052 0.040 0.319 0.318 [53]
24 pol 32 7 59 <0.001 <0.001 0.467 0.003 0.002 0.481 0.472 [54]
25 pol 34 13 141 <0.001 <0.001 <0.001 0.639 0.634 0.978 0.985 [55]
26 pol 23 8 35 <0.001 <0.001 0.681 0.009 <0.001 0.596 0.581 [56]
27 pol 27 8 47 0.022 <0.001 0.895 0.334 0.239 0.727 0.676 [56]
28 fw 125 120 2290 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.573 [57]
29 seed 9 31 119 <0.001 <0.001 0.484 0.056 0.054 0.739 0.723 [58]
30 seed 11 13 53 <0.001 <0.001 0.464 0.002 0.002 0.577 0.570 [59]
31 seed 71 19 283 <0.001 <0.001 <0.001 0.108 0.102 0.683 0.738 [60]
32 seed 57 14 136 <0.001 <0.001 <0.001 <0.001 <0.001 0.067 0.401 [60]
33 seed 71 15 288 <0.001 <0.001 0.008 0.265 0.266 0.567 0.572 [60]
34 seed 32 7 59 0.038 <0.001 0.048 0.158 0.024 0.475 0.631 [60]
35 seed 33 10 70 <0.001 <0.001 0.051 <0.001 <0.001 0.071 0.214 [60]
36 seed 14 65 249 <0.001 <0.001 0.434 0.004 0.003 0.568 0.581 [61]
37 seed 19 29 211 <0.001 <0.001 0.611 0.896 0.896 0.956 0.955 [62]
38 seed 14 11 46 0.008 0.002 0.588 0.810 0.795 0.955 0.957 [63]
39 fruit 21 7 50 <0.001 <0.001 0.875 0.241 0.193 0.724 0.679 [64]
40 fruit 16 24 67 <0.001 <0.001 0.785 <0.001 <0.001 0.677 0.621 [65]
41 fruit 19 33 94 <0.001 <0.001 0.723 0.023 0.020 0.388 0.384 [65]
42 fruit 12 22 46 <0.001 <0.001 0.860 0.015 0.002 0.722 0.572 [65]
43 fruit 14 20 50 <0.001 <0.001 0.875 0.014 0.007 0.511 0.401 [65]
44 pol 61 17 146 <0.001 <0.001 0.621 0.077 0.074 0.332 0.335 [66]
45 pol 35 15 84 <0.001 <0.001 0.553 0.003 0.004 0.221 0.215 [66]
46 fruit 10 16 110 <0.001 <0.001 0.548 0.922 0.922 0.997 0.997 [67]
47 fruit 18 7 38 0.012 <0.001 0.964 0.163 0.085 0.762 0.653 [68]
48 fruit 29 35 146 <0.001 <0.001 0.064 <0.001 <0.001 0.140 0.241 [68]
49 fruit 17 16 121 <0.001 <0.001 0.663 0.312 0.311 0.598 0.601 [69]
50 fruit 33 25 150 <0.001 <0.001 0.985 0.033 0.031 0.175 0.162 [70]
51 pol 41 97 321 <0.001 <0.001 0.092 0.002 <0.001 0.143 0.155 [71]
52 fruit 8 15 38 <0.001 <0.001 0.490 <0.001 <0.001 0.547 0.544 [72]
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2 Supplementary Methods Overview

We begin by introducing the mathematical notation for Double Nested Graphs (DNGs). DNG

notation simplifies the representation of perfectly nested binary bipartite networks and also pro-

vides insights into their structure. We then relate the structure of bipartite graphs to properties

of their matrix representations. Specifically, we show that large dominant eigenvalues correspond

to highly nested structures. We provide a way of calculating the number of nested classes, and

describe nested patterns for minimal and maximal spectral radius (dominant eigenvalue). By over-

laying perfectly-nested quantitative structures onto perfectly nested, close to perfectly nested and

non-nested binary networks, we show that the quantitative structure of a network typically domi-

nates any underlying binary pattern.

We then present tests for (not necessarily perfect) binary and quantitative nestedness, as well as

a derivation of the condition for finding connected random bipartite graphs. We provide test results

for 52 large bipartite ecological networks, and a fuller description of the rescaling procedure used

to obtain quantitative species preference matrices. We conclude with a discussion of multispecies

models and how they can inadvertently build-in dynamical stability.

3 Double Nested Graph notation

In graph theory, perfectly nested binary bipartite graphs are called Double Nested Graphs (DNGs).

Andelić et al. [13] introduce a compact notation for DNGs that yields insights into their structure.

Each graph (with |P | plants, |A| animals and |E| edges following the convention of the main text)

can be described as DNG(α1, α2, . . . , αk; π1, π2, . . . , πk) such that: i) αi ≥ 1, πi ≥ 1; and ii)∑
αi = |A|,

∑
πi = |P |. Using this notation, α1 can be pictured as a “box” containing the

animals with the (same) maximum degree in the network δα1 , α2 as another box containing the

nodes with the second largest degree δα2 , and so forth (i.e., δα1 > δα2 > . . . > δαk
). The same

holds for the πi’s. For example, consider matrix A in Figure 1 of the main text. This matrix can be
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described as DNG(2, 1, 1; 2, 1, 3): there are two animals with the highest degree (δα1 = 6), one

animal with degree 3, and one with degree 2; two plants share the highest degree (δπ1 = 4), one

has degree 3 and three have degree 2 (see Supplementary Figure S1). One can construct a binary

matrix from the DNG notation in the following way: each node in box α1 connects to all nodes in

boxes π1, π2 and π3; the nodes in α2 connect to all those in π1 and π2; and the nodes in α3 connect

only to those in π1. In general, the nodes in box αi connect to all the nodes in boxes π1, . . . , πk+1−i.

This notation captures three fundamental aspects of perfectly nested binary graphs. First, in

DNGs two nodes with the same degree have the same interaction pattern (in food webs we would

call them trophospecies [73]). Second, the number of animal trophospecies is the same as the

number of plant trophospecies (k above). This can be explained using the following analogy: a

perfectly nested matrix is like a flight of stairs. The stair is composed of steps—changes in degree

in the matrix. A well-formed step is composed of the tread (where we step on) and the riser (the

vertical part between treads). If we want to build a stair, we need the same number of treads and

risers. In the same way, in a perfectly nested matrix we need the same number of discontinuities in

the degree distribution of plants and animals. Third, the degree of each species is fully determined

by the DNG notation. The degree of a node contained in αi is simply
∑k+1−i

j=1 πj .

4 The spectral radius of small bipartite graphs

4.1 Eigenvalues and bipartite graphs

The adjacency matrix of a binary bipartite graph with |S| nodes has |S| eigenvalues (not necessarily

distinct) such that if λ is an eigenvalue of A then −λ is also an eigenvalue, and the two have the

same multiplicity (the number of eigenvectors associated with a given eigenvalue). The spectrum

of A is thus symmetric about the origin. Because A is a symmetric matrix, all of its eigenvalues

are real. The largest eigenvalue of A is known as its spectral radius ρ(A), and its value is bounded

by
√
|E| from above [13,15]. Moreover, if δmin is the binary degree (i.e., number of connections)

of the node with the fewest connections and δmax that of the node with the most connections,
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then δmin ≤ ρ(A) ≤ δmax. The eigenvalues are an invariant property of the matrix A. That is,

permutation of rows and columns does not affect the eigenvalue distribution. This is important

because nestedness is a property of the original graph, and a given graph may be represented

by many matrices, so any measure derived from matrix representations—as is typically the case,

including here–should not change under permutation of rows and columns.

To test our conjecture that the configuration with largest spectral radius is a perfectly nested bi-

nary bipartite graph, we computed the spectral radius for all the possible matrices with |P | plants,

|A| animals and |E| edges. This is computationally feasible only for certain parameter combi-

nations as there are M =
(|P |·|A|
|E|

)
possible matrices. We performed this analysis for parameter

combinations withM≤ 108. These are typically moderate sized matrices with low (or high) con-

nectance C = |E|/(|P | · |A|), the fraction of non-zero entries. To generate all the combinations,

we used the gsl combination function included as part of the GNU Scientific Library (GSL).

Figure 1 of the main text summarises our findings for the case |P | = 6, |A| = 4 and |E| = 17.

There are 346,104 possible matrices. Of these, 339,192 are connected (i.e., any two nodes in the

network are joined by a path of edges). Among the connected graphs 7,560 are perfectly nested.

Note that the perfectly nested matrices have higher spectral radii than most other matrices. In fact,

all of the perfectly nested matrices are contained in the top 4.59% of the distribution. The maxi-

mum spectral radius is found for the perfectly nested matrixDNG(1, 2, 1; 1, 4, 1) (matrixN in Fig-

ure 1). All matrices with spectral radius greater than that of the nested matrixDNG(2, 1, 1; 2, 1, 3)

(matrix A in Figure 1) are either perfectly nested or close to perfectly nested: matrices B, E, F ,

G, H , J , L and M would become perfectly nested if we were to move just one edge. Matrices

with the lowest spectral radii display interaction patterns that depart most severely from perfect

nestedness (lowercase letters in Figure 1).

In Supplementary Figure S2 we present the dominant eigenvalue distribution for |P | = 6,

|A| = 4 and |E| = 19. Note that adding two edges greatly reduces the total number of possible

configurations compared to the |E| = 17 case. For these parameters, there are 42,504 possible
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matrices. Of these, 42,384 are connected and 2,544 are perfectly nested. All nested matrices

are contained in the top 15.06% of the distribution. As before, the maximum spectral radius is

associated with a perfectly nested matrix (DNG(3, 1; 1, 5), matrix J).

In all the cases we analysed we found that, among the connected graphs, the largest spectral

radius is associated with a DNG. All other perfectly nested graphs have spectral radii close to this

maximum value. In the main text, we showed that the positive relationship between the spectral

radius and nestedness extends to quantitative matrices (see Figure 2).

As mentioned in the main text, it is worth noting that the (dominant) eigenvector associated

with the spectral radius provides a natural way of ordering nodes that best illustrates matrix nest-

edness.

4.2 Comparison with NODF

NODF [12] is a popular measure of nestedness that is often used in the ecological literature [10,11].

We compared the performance of NODF to the spectral radius by repeating the analysis of the

previous section (that resulting in Supplementary Figure S2) but using NODF as a measure of

nestedness instead of the spectral radius. The NODF distribution with |P | = 6, |A| = 4 with

|E| = 17 is given in Supplementary Figure S3 and is comparable with Figure 1 of the main text,

and the distribution with |E| = 19 is given in Supplementary Figure S4 and is comparable with

Supplementary Figure S2. In both cases, NODF values of perfectly nested matrices span a much

larger range than the spectral radius: with |E| = 17, all perfectly nested matrices are contained

in the top 40.46% of the NODF distribution compared to 4.59% when using the spectral radius;

and with |E| = 19, all perfectly nested matrices are contained in the top 96.60% of the NODF

distribution compared to 15.06% when using the spectral radius. Thus, the statistical ability of

NODF to distinguish between patterns of (perfect) nestedness is much lower than the spectral

radius.

Unlike the spectral radius, many perfectly nested matrices as well as not perfectly nested ma-
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trices share the same value of NODF, an example being the not perfectly nested matrix A in Sup-

plementary Figure S3 sharing the same NODF value as perfectly nested matrices (denoted by the

orange colouring in the distribution). Due to these and other well-know limitations of NODF

[10,11], we suggest that the spectral radius is a more appropriate measure of nestedness.

4.3 How many classes of perfectly nested matrices?

The 7,560 perfectly nested matrices in Figure 1 of the main text can be classified into one of six

classes. That is, each of the 7,560 matrices can be assigned to one of the classes—with each class

having a unique DNG representation—by permutation of rows and columns. In Supplementary

Figure S2 we observe five such classes. In this section, we show how the number of classes can be

computed for arbitrary |P |, |A| and |E|.

First, we note that the column-wise degree distribution of a perfectly nested matrix is a par-

ticular representation of a partition of |E|. In number theory and combinatorics, a partition of a

positive integer is a way of writing the number, in this case |E|, as a sum of positive integers. For

example, matrix A in Figure 1 (main text) can be read as a partition of 17 = 6 + 6 + 3 + 2, while

matrix C would be 17 = 6+5+3+3, and so forth. Thus, the number of classes of nested matrices

N is bounded from above by the partition numberN ≤ N(|E|). We can refine this bound and find

a recurrence relation that allows us to compute the number of perfectly nested classes exactly.

If we examine the partitions of |E| = 17 represented by matrices A, C, D, I , K and N in

Figure 1, we note that i) each partition is composed of four terms (number of animals); ii) each

term is ≥ 1; iii) each term is ≤ |P |; and iv) the first term is always |P |. Thus, we want to count

the number of partitions satisfying these constraints.

Désesquelles [74] provides a recurrence relation for computing the number of partitions of x

into y non-zero terms each of which is≤ z. The number of partitions with these constraints can be

computed as:
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N(x, y, z) =


N(y(z + 1)− x, y, z) ifx > y(z+1)

2

N(x− 1, y − 1, z) +N(x− y, y, z)

−N(x− y − z, y − 1, z) otherwise

(S1)

The recurrence relation can be solved using the following boundary conditions: i) N(0, 1, z) =

1; ii) N(x < 0, y, z) = 0; iii) N(x ≤ z, x, z) = 1; iv) N(0 < x < y, y, z) = 0; v) N(x, x, z) = 1;

and vi) N(x, 1, z) = 1 if x ≤ z and 0 otherwise.

For example, say we want to find the number of partitions of 7 into 3 terms such that each term

is ≤ 4. Then we compute N(7, 3, 4) = 3. The partitions are 7 = 4 + 2 + 1, 7 = 3 + 3 + 1 and

7 = 3 + 2 + 2.

Given the above recurrence relation, we can count the total number of classes of perfectly

nested matrices for any combination of |P |, |A| and |E|. First, we note that each perfectly nested

incidence matrix is composed of two parts: the “L” structure (comprising |P |+ |A| − 1 edges that

fill the first row and column) and a submatrix, bordered by the “L”, that is nested (but not neces-

sarily connected). We can exploit this fact and write down the number of possible (not necessarily

connected) perfectly nested submatrices as:

N (|P |, |A|, |E|) =
|A|−1∑
i=1

N(|E| − (|P |+ |A| − 1), i, |P | − 1) (S2)

where |A| − 1 is the number of columns in the submatrix, |P | − 1 is the number of rows and

|E| − (|P |+ |A| − 1) is the number of edges we have to place in the submatrix once we accounted

for the “L” structure.

Using this formula we can confirm that the number of perfectly nested structures in Figure

1 should be N (6, 4, 17) = 6 and those in Supplementary Figure S2, N (6, 4, 19) = 5. We can

compute the exact number of perfectly nested structures for much larger graphs. For exam-

ple, N (30, 20, 160) = 175, 375, 723, N (40, 40, 200) = 1, 776, 740, 177 and N (100, 50, 300) =

256, 215, 216.
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4.4 Perfectly nested matrices with minimal and maximal eigenvalue

Given that there may be many classes of perfectly nested binary structures, it is informative to

characterise the two classes of perfectly nested matrices yielding the minimum and the maximum

spectral radius for a given number of rows, columns and edges.

To produce all possible perfectly nested structures, we modified the algorithm in [75] to gen-

erate constrained partitions. In this way, we can directly produce all the unique perfectly nested

structures for a given combination of |P |, |A| and |E|.

In Supplementary Figure S5 we report the perfectly nested structure with the minimum and

maximum spectral radius for |P | = 6, |A| = 4 and |E| = {10, 11, . . . , 23}. Notice that the matrix

yielding the minimum spectral radius for a given number of connections |E| can be obtained by

adding one edge to the arrangement found for |E| − 1 connections, while this is not the case for

the matrices yielding the maximum spectral radius.

This suggests that we can rapidly build the perfectly nested matrix yielding the minimum pos-

sible spectral radius using a greedy algorithm. Starting from the “L” structure described above, the

algorithm tries all possible ways to add an edge and chooses the matrix with the minimum spectral

radius, additional edges are added using this process until the required number of edges have been

placed. In this way, we can compute the minimum possible spectral radius for a perfectly nested

matrix with |P | plants, |A| animals and |E| connections.

4.5 Overlaying quantitative nestedness

We can construct a perfectly nested quantitative matrix by taking a perfectly nested binary matrix

and filling the coefficients such that they satisfy the definition of perfect nestedness given in the

main text. One possible way of overlaying a quantitative pattern is as follows. We begin by forming

a distance matrix based on a binary version of the original incidence matrix B. The distance matrix

is organised such that non-zero entries in B take their Manhattan Distance relative to index (1, 1) in

B: that is, for Bi,j > 0, Di,j = Manhattan((i, j), (1, 1)), and Di,j = 0 otherwise. The (quantitative
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overlay) coefficient value is then given by B′i,j = (3
4
)Di,j for Di,j > 0, and zero otherwise, with

B′1,1 = 1. Thus, the further away an element in B′ is from the maximal value at B′1,1, the smaller its

coefficient value—in accordance with a perfectly nested quantitative structure. Of course, values

other than, but in the region of 3
4

could be used, giving qualitatively similar results.

The quantitative overlay procedure can be applied to binary configurations other than perfect

nestedness by ignoring intermediate zero entries. In Supplementary Figure S6 we overlay a nested

quantitative pattern onto a set of perfectly nested, close to perfectly nested and non-nested binary

matrices from Figure 1 of the main text. For the perfectly nested and close to perfectly nested

binary structures, the tests for quantitative nestedness are always highly significant (tests i to iv,

see below). Thus, matrices that are significantly non-nested in their binary form can become

significantly nested when a sufficiently strong nested quantitative pattern is overlaid (for example

with parameter values in the region of 3
4
). This suggests that the quantitative structure of a network

can dominate its underlying binary pattern.

5 Tests for binary and quantitative nestedness

5.1 Binary networks

We showed that perfectly nested binary matrices are associated with large spectral radius. Already,

we have a strong test for binary nestedness: compute the spectral radius of an empirical matrix,

and, if it is greater than the minimum dominant eigenvalue of a corresponding perfectly nested

matrix, then the empirical matrix is almost guaranteed to be nested. However, in general, empirical

data are incompatible with perfect nestedness (in many ecological networks, no super-generalists

interacting with all of the species in the other class are observed). Here we describe three statistical

measures for nestedness that are more applicable to real-world data sets.

In all cases, we take an empirical matrix and compute its spectral radius ρ(A). This is a

very well studied problem, and it is quite straightforward to compute the spectral radius of even a

very large matrix using, for example, the so-called power method [76]. This method allows fast
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computation of the dominant eigenvalue for graphs as large as the World Wide Web [77]. We also

build the perfectly nested matrix with the same number of rows, columns and edges that yields the

minimum spectral radius (An, with spectral radius ρ(An)). (Note, if matrix A is perfectly nested,

then ρ(A) ≥ ρ(An).) Finally, we compute the probability p that a randomly constructed matrixA′,

which preserves some of the properties of A, is associated with a spectral radius ρ(A′) ≥ ρ(A).

This allows us to determine the significance of any characterisation of nestedness.

We compute the p-value for both A and An, which can guide us in determining an adequate

significance criterion for nestedness. We wish to choose a significance criterion such that any

perfectly nested matrix would be assigned a significant p-value. To do so, it is sufficient to choose

a significance level equal to the p-value associated with An, i.e., if p < pAn then the matrix is

considered significantly nested. In this way the probability of declaring a perfectly nested matrix

not significantly nested is small and tends to zero for large samples. For all but the smallest of

networks, p < 0.05 is a suitable general significance level for nestedness.

As previously done for other measures of nestedness [10,11], we define three null models

to construct the incidence matrix B′ of the symmetric matrix A′: i) preserve |P |, |A| and place

|E| edges at random within the matrix; ii) as in i), but accept only connected matrices; and iii)

as in ii), but conserve the degree distribution (the row and column sums of B). Since measures

of nestedness can be very sensitive to matrix size, fill, and configuration [10,11], we used null

model implementations that preserve |P |, |A| and |E| (null models i and ii) and degree distribution

(iii) exactly, and not just their expected values. These three null models are easily extended to

quantitative matrices, considered below, wherein we introduce a fourth null model that is specific

to weighted graphs.

The three tests are increasingly conservative. Test i) accepts disconnected graphs (as have

many other null models in the past [10,11]). We argue that this is not a good choice since perfectly

nested graphs cannot be disconnected (by definition, at least one animal interacts with all plants

and at least one plant interacts with all animals). Test ii), which accepts only connected matrices,
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reflects the approach we took for Figure 1 and Supplementary Figure S2.

Test iii), which is popular in the literature [10,11], poses a problem. We showed above that

in perfectly nested binary matrices the degree distribution of animals and plants have the same

number of discontinuities. This means that whenever the number of discontinuities in the degree

distribution of the animals does not match that of the plants, no perfectly nested matrix with the

same degree distribution exists. And so it is not generally possible to compute ρ(An) for null

model iii), while this is straightforward for the other null models.

Furthermore, by construction, the set of comparison matrices of test i) includes all those in test

ii), which includes all those in test iii). In some cases, the set of comparison matrices for binary

test iii) can be small. In fact, since a perfectly nested binary matrix (DNG) is completely defined

by its degree distribution, there is only one matrix with the self-same degree distribution. Yet

paradoxically, test iii) would classify such a matrix as being (maximally) non-nested. Indeed, the

statistical power of test iii) decreases as matrices tend towards perfect nestedness. This is because

there are fewer unique (non-isomorphic or non-degenerate) matrices of given |P |, |A| and |E|

when the degree distribution is highly skewed [78]. This suggests that the application of test iii) to

empirical networks, despite its popularity, should be handled with care.

5.2 Condition for finding connected graphs

A classical result for Erdös-Rényi random graphs is the percolation point of connected graphs. For

n nodes with probability of connection C = |E|/(|P | · |A|), graphs in which C > log(n)/n are

almost surely connected, while those in which C < log(n)/n are almost surely disconnected (for

the limit n→∞).

Because for nestedness test ii) we have the requirement of connected graphs, it is important to

find the percolation point for random bipartite graphs. We keep the notation of the main text, and

define |P | ≥ |A|. Saltykov [32] showed that in bipartite graphs the number of isolated nodes (i.e.,

those that are not part of the giant component) is Poisson distributed. Using this result, Blasiak
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& Durrett [33] provided the following extension: for a random bipartite graph with |P | rows,

|A| columns and |E| edges, whenever |E| > |P | log(|P | + |A|), then the graph is almost surely

connected (again, for the limit n→∞).

From this, one can see that the probability of finding a connected graph approaches one when-

ever the probability of connection C > |P | log(|P |+ |A|)/(|P | · |A|) = log(|P |+ |A|)/|A|.

For networks close to this threshold, it would be better to build a sampling algorithm based on

Monte Carlo Markov Chain methods. For example: at each step of the algorithm, two matrix coef-

ficients are swapped at random; if this leads to a disconnected network then the move is rejected,

otherwise it is accepted. However, the mixing time of such an algorithm is unknown (the point at

which the matrix can be considered sufficiently randomised).

5.3 Quantitative networks

To assess the nestedness of a quantitative incidence matrix B we can apply the three tests used in

the binary case, but now the non-zero entries to be shuffled can take positive values other than one.

We also introduce a fourth null model particular to quantitative matrices: iv) preserve |P |, |A| and

|E|, and shuffle the coefficient values of B but not their positions. That is, maintain the binary

structure of the matrix (where the non-zero entries are located) but randomise which coefficient

values occupy which non-zero positions. As before, the p-value is the probability that a randomly

constructed matrix B′ has spectral radius ρ (A′) ≥ ρ (A), where A and A′ are the adjacency

matrices of B and B′, respectively. For test iv), the p-value is to equal one when all the coefficients

have the same value (e.g., a binary matrix).

5.4 Generating random matrices

For tests i) and ii), randomised versions of the original matrix are generated using the gsl ran shuffle

function included as part of the GNU Scientific Library (GSL); and for test ii) only connected

graphs are retained. We checked for connectedness using a Depth First Search (DFS) algorithm
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that runs in linear time. Test iii) generates randomised matrices using the “Trial swap” algorithm

described in [79], which shuffles coefficient values while maintaining the original degree distribu-

tion. This algorithm has the advantage of sampling potential matrices uniformly. Test iv) uses the

gsl ran shuffle function to randomise the coefficient values but not binary position of the

original matrix, as required.

6 Effective abundance of quantitative bipartite networks

6.1 Empirical data

We analysed 52 bipartite ecological networks from the literature (Supplementary Table S1). The

networks spanned a range of mutualistic, antagonistic and facilitative systems, and all included

quantitative interaction data. We chose networks that had at least 20 species in the largest con-

nected component and had sufficient binary links (edges) to perform nestedness test ii), i.e., con-

nected structures could be found during network randomisation. As described in the main text

(and in more detail below), we obtained quantitative preference networks from the original data,

and ran nestedness tests on binary versions of the networks as well as the preference matrices. We

are particularly interested in the results of test ii) for determining the nestedness of binary network

structure, and quantitative test iv) for determining the nestedness of species preferences (wherein

we hold the binary structure constant). Network properties and results for all seven nestedness

tests are given in Supplementary Table S1.

6.2 Effective abundance, pseudo-inverse and mass action

Here we present theory underlying the normalisation of empirical quantitative data according to

mass action. Data are in the form of an incidence matrix B with entries that record, for example, the

number of visits between a pollinator species and a plant species. In the main text we suggested that

the elements of B can be decomposed into a preference term and a mass action term (the product

of interacting species effective abundances), i.e., Bi,j = γi,jxixj . Using the method outlined below
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we show how effective abundances, x̂i and x̂j (estimated quantities will be distinguished by the

“hat” symbol), can be inferred from empirical data. This allows us to rescale the incidence matrix

according to mass action, leading to an estimate for species preferences: γ̂i,j = Bi,j/(x̂ix̂j). If the

system follows the principle of mass action completely then the γ̂-matrix is binary, and otherwise,

the γ̂-matrix can be tested for quantitative nestedness.

To begin, if no interaction is recorded Bi,j = 0 and we set the estimate for species preference

γ̂i,j = 0. For the remaining set of recorded counts with Bi,j > 0, we take logarithms: logBi,j =

log γi,j+log xi+log xj , and so under the mass action hypothesis log γi,j = 0 which implies γi,j = 1,

as required. Let us recast the log-expression as Yi,j = αi,jXi+βi,jXj+ εi,j , where αi,j and βi,j can

be thought of as regression coefficients, Xi and Xj are unknown variables, and εi,j is an error term.

We look to minimise errors ε so that we may obtain best-fit effective abundances x̂i ≈ Xi and

x̂j ≈ Xj for the mass action normalisation. If there are no errors—which is highly unlikely—then

the estimated γ̂-matrix is binary, as required; deviations from the best-fit solution give rise to γ̂i,j’s

> 1 and γ̂i,j’s < 1, accordingly. In this way, the minimisation attempts to constrain the γ̂i,j’s to be

as close to 1 as possible, and is therefore conservative in assessing quantitative preferences relative

to mass action.

For illustrative simplicity, the expression Yi,j = αi,jXi + βi,jXj + εi,j can be written as a

matrix equation of the form y = Mx, where we have also dropped the error term but it is still

implied. The vector y contains the logarithm of empirical pairwise interaction data, M is a binary

matrix indicating which species (column) are involved (entry-1) in each interaction (row), and x

is an unknown vector of effective abundances. We solve y = Mx for x = M∗y by finding the

pseudo-inverse matrix M∗. Suppose M is a n × m matrix, y is a known n-vector and x is an

unknown m-vector. If n > m (which is always the case for our empirical networks) then there

are more constraints than unknowns, and the system is overdetermined, with no solutions (except

for degenerate cases). Under this condition we can find a least-squares solution that minimises the

error (y −Mx).
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We want to find x that minimises ||y −Mx||2, which can be also be written (y −Mx)T (y −

Mx). This expression can be expanded: yTy − yTMx − xTMTy + xTMTMx. Differentiating

w.r.t. x and setting the result equal to zero yields −(yTM)T − (MTy) + 2MTMx = 0, and

so x = (MTM)−1MTy, where (MTM)−1MT is an m × n matrix called the pseudo-inverse.

We calculate the pseudo-inverse using the pseudoinverse function included as part of the

corpcor package in R.

The vector x above represents entire set of effective abundances and, as stated at the beginning

of this section (where the effective abundances were written x̂i and x̂j), they can be used to obtain

an estimated best-fit quantitative preference matrix: γ̂i,j = Bi,j/(x̂ix̂j).

7 Dynamical models and built-in stability

Thébault and Fontaine [9] study a system of differential equations describing obligate mutualism.

(Obligate is understood to mean that species cannot survive in isolation, and therefore interaction

with other species in the system is a necessary condition for existence.) They claim that “A highly

connected and nested architecture promotes community stability [which they choose to define as

persistence] in mutualistic networks.” However, we have shown nestedness to minimise local sta-

bility. We argue that they have inadvertently built-in dynamical stability into their model, and that

the positive relationship they found between nestedness in persistence actually reflects a positive

relationship between connectance and persistence in obligate mutualistic systems (an argument

also put forward by James et al. [28]). When repeating their analysis, we find nestedness to have

no effect on either (dynamical) stability or persistence.

Without loss of generality, the system can be written as

dXi

dt
= Xi

(
−ri − siXi +

∑
j↔i

αijXj

hij +
∑

k↔iXk

)
, (S3)

where the sums are taken across all species j that are mutualists of i (denoted by j ↔ i) and
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all parameters are positive. This system has one feasible equilibrium (besides the trivial case

X∗i = 0∀ i, i.e., no species are present):

X∗i =

(
−ri +

∑
j↔i

αijXj

hij+
∑

k↔iXk

)
si

. (S4)

Simulations demonstrate that the diagonal elements of the community matrix M (the Jacobian

matrix evaluated at equilibrium), Mii = −siX∗i , dominate the corresponding row—a phenomenon

known as diagonal dominance. That is, |Mii| >
∑

j |Mij|, for all i, which is a sufficient condition

for dynamical stability (see main text). Hence, all feasible equilibria (X∗i > 0∀ i) are necessarily

stable irrespective of nestedness (or, in fact, any other configuration of interactions).

It has been shown for systems very similar to those examined here that local stability implies

global stability [80]. This indicates that all orbits in the positive orthant of phase space are attracted

to the equilibrium point, and such systems are guaranteed to be stable irrespective of initial con-

ditions. The one difference in the model Thébault & Fontaine consider is that a negative intrinsic

rate of species increase, −ri, is used rather than a positive rate ri.

Using this slightly different model, Thébault & Fontaine describe a positive effect of nested-

ness on the probability of reaching a feasible equilibrium (persistence). With a negative intrinsic

rate of increase −ri, species with densities close to zero will go extinct unless they have sufficient

mutualistic partners to “pull” the species to larger density. A disconnected species would neces-

sarily go extinct (due to obligate mutualism), and a species with few interaction partners would be

more likely to go extinct than one that is well connected. Because of this fact, connectance—and

not nestedness—should be important for persistence.

We repeated the experiments of Thébault & Fontaine for different levels of connectance and

measured the correlation between nestedness and persistence for a given connectance. The results

show that nestedness produces no significant trend, whereas connectance is essential for persis-

tence, in line with our argument (Supplementary Figure S7).

25



Supplementary References
[34] De Sassi, C. Data. unpublished (2XXX).

[35] Tylianakis, J.M., Tscharntke, T. & Klein, A.-M. Diversity, ecosystem function, and stability
of parasitoid–host interactions across a tropical habitat gradient. Ecology 87, 3047–3057
(2006).
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